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NESSUS (Numerical Evaluation of Stochastic Structures under Stress) is

the primary computer code being developed in the NASA PSAM project. It

consists of four modules NESSUS/E×PERT, NESSUS/FPI, NESSUS/PRE and

NESSUS/FEM. This presentation concentrates on EXPERT and FPI, while PRE and

FEM are discussed in another presentation.

One challenge of the PSAM effort is the effective integration of advanced

finite element and probabilistic methods. A code with linear static and

dynamic capabilities has been provided to NASA. However, it is clear that, in

the final version, the user must be provided with an interface program to

effectively use features such as nonlinear analysts and confidence band

estimation. Such an interface program will also expedite the process of

conducting the analyses necessary for NESSUS verification.

To provide an effective interface between NESSUS and the user, an expert

system module called NESSUS/EXPERT is being developed. That system uses the

CLIPS artificial intelligence code developed at NASA-JSC. The code is

compatible with FORTRAN, the standard language for codes in PSAM. The user

interacts with the CLIPS inference engine, which is linked to the knowledge

database as shown in Figure I.

The essential features of EXPERT are its automated user input and

automated results. The EXPERT module will provide the user with features such

as interactive HELP, data set consistency checking, and defaults for the

statistical models of random variables. EXPERT will also assist the analyst

in managing the large database produced in perturbing the random variables.

Such variables may include material properties, geometry, boundary conditions

and loading. Because of the potentially large number of random variables,

this process must be automated to free the analyst from basically a

bookkeeping task. For analysis of certain critical SSME components, EXPERT

will choose component specific perturbations. For example, in the case of a

turbine blade shown in Figure 2, perturbations may be applied directly to

parameters defining the blades geometry such as the twist and tilt angles and
blade thickness.

The perturbation database generated by NESSUS/FEM and managed in EXPERT

is used to develop the so-called response or performance model in the random

variables. Figure 3 illustrates such a model in which natural frequency is a

random function of material modulus. It is from this performance model that

the probabilistic response is computed. Two independent probabilistic methods

are available in PSAM for the computation of the probabilistic structural

response. These are the Fast Probability Integration (FPI) method and Monte

Carlo simulation. FPI is classified as an advanced reliability method and has

been developed over the past ten years by researchers addressing the

reliability of civil engineering structures. Monte Carlo is a well-

established technique for computing probabilities by conducting a number of

deterministic analyses with specified input distributional information.
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For structural systems, the probability of failure is generally low. In

such situations, Monte Carlo is inefficient since a large number of

simulations are required to confidently predict low probability levels. The

efficiency of FPI, on the other hand, is not tied to the probability level and

can accurately predict the tails oF the response distribution. However, Monte

Carlo is still useful in PSAM to check the accuracy and robustness of the FPI

algorithms. For a given performance function, FPI can compute point

probability estimates or obtain full distributional information in terms of

the cumulative probability distribution. In general, the performance function

may be nonlinear in the random variables and contain mixed probability

distribution types. Figure 4 qualitatively compares typical FPI and Monte

Carlo results and illustrates the increasing inaccuracy in Monte Carlo at the

low probability levels.

The process used by FPI to make the probability estimates may be

considered a problem of constrained minimization. This is _Ilustrated in

Figure 5. Let us assume that material density and modulus of elasticity are

random variables in an eigen-frequency analysis. The response function at a

particular frequency is shown, with the lines of constant probability given by

the circles. The design or most probable point is defined as the point with

the highest Joint distribution at a given value of the response function. The

design point is geometrically located at the minimum distance B, called the

safety index. In a first-order reliability analysis, B is related to the

probability of exceeding the specified frequency.

The FPI algorithm uses an efficient iteration technique to converge to

the most probable point. The first estimate of the design points uses the

NESSUS-generated database at the mean state. From this initial guess, the

automated algorithms in FPI use successive NESSUS perturbations at other

points to converge to the design point as illustrated in Figure 6.

Convergence is usually obtained in several (three to five) iterations. This

procedure gives the probability of exceedence at a particular value of the

response function. This is called a point probability estimate. Cumulative

distributional information can be obtained by running FPI at several values of

the response variables as shown on Figure 4.

In summary, the NESSUS/EXPERT and NESSUS/FPI modules provide the

designer/analyst with computational methodologies and software for effectively

and efficiently evaluating design sensitivities and uncertainties and

quantifying the structural performance of SSME components.
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FIGURE I.
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FIGURE 2.
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FPI ATTRIBUTES
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